
1

KATA PENGANTAR

Assalamu’alaikum Wr. Wb.

Alhamdullilah, atas berkat rahmat Allah Yang Maha Kuasa dengan didorongkan oleh keinginan luhur

memperluas wawasan dalam pengembangan pengetahuan tentang Algoritma dan Struktur Data I, maka

buku petunjuk (modul) praktikum ini disusun/dibuat.

Buku petunjuk (modul) Praktikum Pemrograman II ini dibuat untuk membantu jalannya Praktikum

Pemrograman II prodi S1 Ilmu Komputer. Buku petunjuk (modul) ini dibuat sedemikian rupa sehingga

dapat dengan mudah dipahami dan dipelajari oleh mereka yang belum pernah mengenal Algoritma dan

Struktur Data sekalipun, dan bagi mereka yang pernah mengenal membaca buku ini akan menyegarkan

ingatan.

Terima kasih kami ucapkan kepada semua pihak yang telah membantu dan mendukung pembuatan buku

ini.

Wassalamu’alaikum Wr. Wb.

LABORATORIUM KOMPUTER DASAR

DIKE F.MIPA UGM

2

DAFTAR ISI

KATA PENGANTAR... 1

DAFTAR ISI ... 2

1.1 LEARNING OBJECTIVES .. 4
1.2 MATERIALS ... 4

1..2.1 BASIC SYNTAX ... 4
1.2.2 JAVA PRIMITIVES TYPE .. 6
1.2.3 VARIABLE, CONSTANTS, AND ASSIGNMENTS ... 7
1.2.4 COMMENTS ... 7
1.2.5 OPERATORS ... 8
1.2.6 FLOW CONTROL .. 8
1.2.7 INPUT .. 10
1.2.8 INPUT FROM TEXT FILE ... 10

2.1 LEARNING OBJECTIVES .. 13
2.2 MATERIALS ... 13

2.2.1 CLASS , OBJECT, ATRIBUT DAN METHOD .. 13
2.2.2 DEFINING CONSTRUCTOR ... 14
2.2.3 ENKAPSULASI ... Error! Bookmark not defined.
2.2.4 INHERITANCE .. 18
2.2.5 POLYMORPHISM ... 19
2.2.6 ABSTRACT .. 22
2.2.7 INTERFACE ... 26

2.3 EXERCISES ... 28
2.4 HOMEWORK ... 29
3.1 LEARNING OBJECTIVES .. 30
3.2 MATERIALS ... 30

3.2.1 Array .. 30
3.2.2 Array Processing .. 32
3.2.3 Linked List.. 35
3.2.4 Built-in Linked List ... 40

4.1 LEARNING OBJECTIVES .. 43
4.2 MATERIALS ... 43

4.2.1 STACK .. 43
4.2.2 Queue ... Error! Bookmark not defined.

4.3 Exercise .. Error! Bookmark not defined.
5.1 OBJECTIVES ... 56
5.2 MATERIALS ... 56

5.2.1 MERGE-SORT OVERVIEW .. 56
5.3 EXERCISES ... 62
6.1 LEARNING OBJECTIVES .. 63
6.2 MATERIALS ... 63

6.2.1 TREE OVERVIEW .. 63
6.2.2 BINARY TREE ... 64

3

6.2.3 BINARY TREE ABSTRACT DATA TYPE ... 64
6.2.4 LINKED STRUCTURE FOR BINARY TREE ... 64
6.2.5 BINARY SEARCH TREE .. 64
6.2.6 RED-BLACK TREE ... 67

6.3 EXERCISE ... 69
6.4 HOMEWORK ... 69
7.1 LEARNING OBJECTIVES .. 70
7.2 MATERIALS ... 70

7.2.1 Hash Function ... 70
7.2.2 Preventing Collision .. 71

7.3 Exercise ... 81
8.1 LEARNING OBJECTIVES .. 82
8.2 MATERIALS ... 82

8.2.1 OVERVIEW ... 82
8.2.2 Array Implementation ... 82
8.2.3 Heap – insert ... 84
8.2.4 Heap – remove .. 85
8.2.4 Print the heap tree .. 87

8.3 Exercise ... 87
8.4 Homework .. 87
9.1 LEARNING OBJECTIVES .. 88
9.2 MATERIALS ... 88

9.2.1 OVERVIEW ... 88
9.2.2 GRAPH IMPLEMENTATION .. 89

9.3 EXERCISES ... 94
10.1 LEARNING OBJECTIVES .. 95
10.2 MATERIALS .. 95

10.2.1 WEIGHTED GRAPH OVERVIEW .. 95
10.2.2 WEIGHTED GRAPH IMPLEMENTATION ... 95

10.3 EXERCISES .. 97
10.4 HOMEWORK .. 97

4

CHAPTER 1 – INTRODUCTION TO JAVA

1.1 LEARNING OBJECTIVES
1 Students began to recognize the Java Programming
2 Students can use the Java language to create programs
3 Students understand the terms on Java

1.2 MATERIALS
Java is a programming language that can make all forms of application, desktop, web, mobile and other,
as made by using conventional programming language to another. Java programming language is object
oriented (OOP-Object Oriented Programming), and can run on various operating systems. Java
development is not only focused on one operating system, but is developed for a variety of operating
systems and is open source. “Write once, run anywhere”.

1..2.1 BASIC SYNTAX

When we consider a Java program, it can be defined as a collection of objects that communicate via
invoking each other's methods. Let us now briefly look into what do class, object, methods, and instance
variables mean.
Object − Objects have states and behaviors. Example: A dog has states - color, name, breed as well as
behavior such as wagging their tail, barking, eating. An object is an instance of a class.
Class − A class can be defined as a template/blueprint that describes the behavior/state that the object of
its type supports.
Methods − A method is basically a behavior. A class can contain many methods. It is in methods where
the logics are written, data is manipulated and all the actions are executed.
Instance Variables − Each object has its unique set of instance variables. An object's state is created by
the values assigned to these instance variables.

Let us look at a simple code that will print the words Hello World.

public class MyFirstJavaProgram {

 /* This is my first java program.

 */

 public static void main(String []args) {

 System.out.println("\nHello World"); // prints Hello World

 System.out.println(“\nI Am Julia Robert “);

 System.out.println(“\my Hobbies are Writing, Reading, Biking “);

 System.out.println(“\nmy Favorite soccor is Messi”)

 System.out.println(“\nHow do you do today guyyy”);

 }

}

Say Hello

5

Display my favorites and my perfromance by using methods

Let's look at how to save the file, compile, and run the program. Please follow the subsequent steps −
Open notepad and add the code as above.

6

 Save the file as: MyFirstJavaProgram.java.

 Open a command prompt window and go to the directory where you saved the class. Assume it's
C:\.

 Type 'javac MyFirstJavaProgram.java' and press enter to compile your code. If there are no errors
in your code, the command prompt will take you to the next line (Assumption : The path variable
is set).

 Now, type ' java MyFirstJavaProgram ' to run your program.

 You will be able to see ' Hello World ' printed on the window.

About Java programs, it is very important to keep in mind the following points.

 Case Sensitivity − Java is case sensitive, which means identifier Hello and hello would have
different meaning in Java.

 Class Names − For all class names the first letter should be in Upper Case. If several words are
used to form a name of the class, each inner word's first letter should be in Upper Case.
Example: class MyFirstJavaClass

 Method Names − All method names should start with a Lower Case letter. If several words are
used to form the name of the method, then each inner word's first letter should be in Upper Case.
Example: public void myMethodName()

 Program File Name − Name of the program file should exactly match the class name.
When saving the file, you should save it using the class name (Remember Java is case sensitive)
and append '.java' to the end of the name (if the file name and the class name do not match, your
program will not compile).
Example: Assume 'MyFirstJavaProgram' is the class name. Then the file should be saved as
'MyFirstJavaProgram.java'

 public static void main(String args[]) − Java program processing starts from the main() method
which is a mandatory part of every Java program.

1.2.2 JAVA PRIMITIVES TYPE

Table 1.1 – Java Primitives Type

TYPE DESCRIPTION

byte Integer 8-bit signed integer
The range is [-2^7, 2^7-1] = [-128, 127]

short 16-bit signed integer
The range is [-2^15, 2^15-1] = [-32768, 32767]

int 32-bit signed integer
The range is [-2^31, 2^31-1] = [-2147483648, 2147483647] (≈9
digits)

long 64-bit signed integer

The range is [-2^63, 2^63-1] = [-9223372036854775808,

+9223372036854775807] (≈19 digits)

float Floating-
Point
Number

32-bit single precision floating-point number
(≈6-7 significant decimal digits, in the range of ±[≈10^-45, ≈10^38])

double 64-bit double precision floating-point number
(≈14-15 significant decimal digits, in the range of ±[≈10^-324, ≈10^308])

7

char Character
Represented in 16-bit Unicode '\u0000' to '\uFFFF'.
Can be treated as 16-bit unsigned integers in the range of [0, 65535] in arithmetic
operations.

boolean Binary
Takes a value of either true or false.
The size of boolean is not defined in the Java specification, but requires at least one bit.

1.2.3 VARIABLE, CONSTANTS, AND ASSIGNMENTS

1. Declare a variable of a specified type
type identifier;

int option;

2. Declare multiple variables of the same type, separated by commas

type identifier1, identifier2, ..., identifierN;

double sum, difference, product, quotient;

3. Declare a variable and assign an initial value

type identifier = initialValue;

int magicNumber = 88;

4. Declare multiple variables with initial values

type identifier1 = initValue1, ..., identifierN = initValueN;

String greetingMsg = "Hi!", quitMsg = "Bye!";

5. Declare Constants

final double PI = 3.1415926; // Need to initialize

6. Assign the literal value (of the RHS) to the variable (of the LHS)

variable = literalValue;

number = 88;

7. Evaluate the expression (RHS) and assign the result to the variable (LHS)

sum = sum + number;

1.2.4 COMMENTS

Ada dua komentar yaitu inline comment dan block comment.
Inline Comment yaitu komentar yang berada dalam satu baris, menggunakan tanda //
Contoh :

 // ini komentar

Block Comment yaitu komentar yang penjelasannya lebih dari satu baris, menggunakan tanda
/*....

 */

Contoh :
/*ini komentar 1

8

 ini komentar 2

 Ini komentar 3 */

1.2.5 OPERATORS

Java supports the following arithmetic operators:
Table 1.2 – Arithmetic Operators

Operator Description Usage Examples

* Multiplication expr1 * expr2 2 * 3 → 6
3.3 * 1.0 → 3.3

/ Division expr1 / expr2 1 / 2 → 0
1.0 / 2.0 → 0.5

% Remainder (Modulus) expr1 % expr2 5 % 2 → 1
-5 % 2 → -1
5.5 % 2.2 → 1.1

+ Addition
(or unary positive)

expr1 + expr2
+expr

1 + 2 → 3
1.1 + 2.2 → 3.3

- Subtraction
(or unary negate)

expr1 - expr2
-expr

1 - 2 → -1
1.1 - 2.2 → -1.1

Besides the usual simple assignment operator (=) described earlier, Java also provides the so-

called compound assignment operators as listed:
Table 1.3 – Compound Assignment

Operation Description Usage Example

= Assignment
Assign the value of the LHS to
the variable at the RHS

var = expr x = 5;

+= Compound addition and
assignment

var += expr

same as var = var + expr

x += 5;

same as x = x + 5

-= Compound subtraction and
assignment

var -= expr

same as var = var - expr

x -= 5;

same as x = x - 5

*= Compound multiplication
and assignment

var *= expr

same as var = var * expr

x *= 5;

same as x = x * 5

/= Compound division and
assignment

var /= expr

same as var = var / expr

x /= 5;

same as x = x / 5

%= Compound remainder
(modulus) and assignment

var %= expr

same as var = var % expr

x %= 5;

same as x = x % 5

Java also have logical operators, bitwise operators, increment/decrement,etc, which have the similar
syntax with c++ that you have learned in the previous semester.

1.2.6 FLOW CONTROL

There are three basic flow control constructs - sequential, conditional (or decision), and loop (or iteration),
as illustrated below.

9

Syntax Example

// if-then
if (booleanExpression) {
 true-block ;
}

if (mark >= 50) {
 System.out.println("Congratulation!");
 System.out.println("Keep it up!");
}

// if-then-else
if (booleanExpression) {
 true-block ;
} else {
 false-block ;
}

if (mark >= 50) {
 System.out.println("Congratulation!");
 System.out.println("Keep it up!");
} else {
 System.out.println("Try Harder!");
}

10

1.2.7 INPUT

Java, like all other languages, supports three standard input/output streams: System.in (standard input
device), System.out (standard output device), and System.err (standard error device). The System.in is
defaulted to be the keyboard; while System.out and System.err are defaulted to the console. They can be
re-directed to other devices, e.g., it is quite common to redirect System.err to a disk file to save these
error message.
You can read input from keyboard via System.in (standard input device).

Fat Burning Hear Rate

1.2.8 INPUT FROM TEXT FILE

Other than scanning System.in (keyboard), you can connect your Scanner to scan any input source, such
as a disk file or a network socket, and use the same set of methods nextInt(), nextDouble(), next(),
nextLine() to parse the next int, double, String and line. For example,

Scanner in = new Scanner(new File("in.txt")); // Construct a Scanner to scan

a text file

// Use the same set of methods

int anInt = in.nextInt(); // next String

11

double aDouble = in.nextDouble(); // next double

String str = in.next(); // next int

String line = in.nextLine(); // entire line

To open a file via new File(filename), you need to handle the so-called FileNotFoundException, i.e., the
file that you are trying to open cannot be found. Otherwise, you cannot compile your program. There are
two ways to handle this exception: throws or try-catch.

To run the program below, create a text file called in.txt containing:

Knowledge
“Imagination is more important than knowledge. For knowledge is limited, whereas imagination
embraces the entire world, stimulating progress, giving birth to evolution.”
— Albert Einstein

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
— Stephen Hawking

“The more you know, the more you realize you know nothing.”
— Socrates

“Tell me and I forget. Teach me and I remember. Involve me and I learn.”
— Benjamin Franklin

“Real knowledge is to know the extent of one’s ignorance.”
— Confucius

“If people never did silly things, nothing intelligent would ever get done.”
— Ludwig Wittgenstein

12

13

CHAPTER 2 – OBJECT ORIENTED PROGRAMMING

2.1 LEARNING OBJECTIVES
1. Praktikkan paham perbedaan bahasa Java dengan bahasa pemrograman lain

2. Praktikkan paham keunggulan dari bahasa Java

3. Praktikkan paham fitur-fitur yang bisa digunakan pada java

2.2 MATERIALS
Java is designed to be a simple language, minimize mistakes, but still formidable. That is what distinguishes
it from other programming languages. A Java application written in Java and take advantage of Java APIs
(Application Programming Interface). Java API provides a collection of ready-made classes that facilitate
the writing of the application.

2.2.1 CLASS , OBJECT, ATRIBUT DAN METHOD

Class is a mold, template, prototype, the place of the object, while the object is the content of the class
itself. One class can have more than one object or many. A simple example as follows: a jelly mold bias
produces many jelly.
Locusts are like objects that have a name, eyes, legs, wings, color, type. Locusts can also fly and perch.
Eyes, legs and wings of color in the world of programming is also called attributes or properties. While the
activity is flying and landed in the world of programming called the method.

Gambar 2.1 Sejumlah kalimat di Java yang tidak bisa digunakan sebagai nama class.

Modifier
Modifier is used to determine the relationship of an element class with elements of other classes. And
modifier itself has several types according to their access, namely:
• Public: all the elements contained in a class (method, object, etc.) can be freely accessed by all other
classes are in one package or not.
• Protected: all the elements contained in a class (method, object, etc.) can be accessed by all other
classes are in one package and class parts / derivatives of the initial class albeit different package.
• Default: all the elements contained in a class (method, object, etc.) can be accessed by all other classes
that are in one package.
• Private: all the elements contained in a class (method, object, etc.) can be accessed by the class itself.

14

Gambar 2.2 Gambaran Modifiers

 static
Static adalah salah satu jenis modifier di Java yang digunakan agar suatu atribut atau pun
method dapat diakses oleh kelas atau objek tanpa harus melakukan instansiasi terhadap kelas
tersebut.
Method main adalah salah satu contoh method yang mempunyai modifier static.

 final
Final adalah salah satu modifier yang digunakan agar suatu atribut atau method bersifat final
atau tidak bisa diubah nilainya. Modifier ini digunakan untuk membuat konstanta di Java.

 abstract
Abstract adalah modifier yang digunakan untuk membuat kelas dan method abstrak.

2.2.2 DEFINING CONSTRUCTOR

Constructor is a method that is automatically invoked / executed at a class diinstansi. Or in other words
constructor is a method that first run when an object is first created. If a class is not found automatically
constructor Java will create a default constructor.

Here is an example of class and constructor.

15

16

Berikut kelas untuk melakukan testing.

17

2.2.3 ENCAPSULATION

Encapsulation is wrapping, wrapping herein is intended to maintain a process that can not be accessed
program arbitrarily or intervention by other programs. The concept of encapsulation is very important to
maintain the program needs to be accessible at any time, while keeping the program.

In daily life encapsulation can be exemplified as the electric current in the generator, and a rotation system
generator to produce electric current. Working electric current does not affect the working of the system
of rotation of the generator, and vice versa. Because in the electric current, we do not need to know how
the rotation system performance generator, if the generator rotates backward or forward or even oblique.
Similarly, in the system of rotation of the generator, we do not need to know how the electric current,
whether lit or not.

That concept of encapsulation work, he would protect a program of access to or intervention of other
programs that influence it. It is very maintaining the integrity of the program that was created with the
concept and plans that have been determined from the outset. An example of this can be seen in the
Circle class.

18

2.2.4 INHERITANCE

Inheritance (inheritance / succession), this is a characteristic of OOP are not contained in the old style
procedural programming. In this case, inheritance aims to form a new object that has the same properties
as or similar to previously existing objects (inheritance). Object derivatives may be used Markowitz
derivative object again and so on. Any changes to the parent object, the object will also change its
derivatives. The composition of the parent object by object derivative called a hierarchy of objects. Or
Inheritance is the inheritance of properties of an object to the object derivatives.

In this example, we derive a subclass called Cylinder from the superclass Circle, which we have created in
the previous chapter. It is important to note that we reuse the class Circle. Reusability is one of the most
important properties of OOP. (Why reinvent the wheels?) The class Cylinder inherits all the member
variables (radius and color) and methods (getRadius(), getArea(), among others) from its superclass Circle.
It further defines a variable called height, two public methods - getHeight() and getVolume() and its own
constructors, as shown:

19

2.2.5 POLYMORPHISM

Polymorphism is an action that allows programmers convey a specific message out of the object hierarchy,
in which different objects give feedback / response to the same message in accordance with the nature
of each object. Or Polymorphic can mean many forms, meaning that we can override (override), a method,
which is derived from the parent class (super class) where the object is lowered, so it has a different
behavior.

20

In our earlier example of Circle and Cylinder: Cylinder is a subclass of Circle. We can say that Cylinder "is-
a" Circle (actually, it "is-more-than-a" Circle). Subclass-superclass exhibits a so called "is-a" relationship.

21

Via substitutability, we can create an instance of Cylinder, and assign it to a Circle (its superclass)
reference, as follows:

// Substitute a subclass instance to a superclass reference

Circle c1 = new Cylinder(1.1, 2.2);

You can invoke all the methods defined in the Circle class for the reference c1, (which is actually holding
a Cylinder object), e.g.

// Invoke superclass Circle's methods

c1.getRadius();

This is because a subclass instance possesses all the properties of its superclass.
However, you CANNOT invoke methods defined in the Cylinder class for the reference c1, e.g.

// CANNOT invoke method in Cylinder as it is a Circle reference!

c1.getHeight(); // compilation error

c1.getVolume(); // compilation error

This is because c1 is a reference to the Circle class, which does not know about methods defined in the
subclass Cylinder.
c1 is a reference to the Circle class, but holds an object of its subclass Cylinder. The reference c1, however,
retains its internal identity. In our example, the subclass Cylinder overrides methods getArea() and
toString(). c1.getArea() or c1.toString() invokes the overridden version defined in the subclass Cylinder,
instead of the version defined in Circle. This is because c1 is in fact holding a Cylinder object internally.

c1.toString(); // Run the overridden version!

22

c1.getArea(); // Run the overridden version!

2.2.6 ABSTRACT

An abstract method is a method with only signature (i.e., the method name, the list of arguments and the
return type) without implementation (i.e., the method’s body). You use the keyword abstract to declare
an abstract method.
For example, in the Shape class, we can declare abstract methods getArea(), draw(), etc, as follows:

Implementation of these methods is NOT possible in the Shape class, as the actual shape is not yet known.
(How to compute the area if the shape is not known?) Implementation of these abstract methods will be
provided later once the actual shape is known. These abstract methods cannot be invoked because they
have no implementation.

23

Here is the implementation from above Diagram.
Shape.java

24

Triangle.java

Rectangle.java

25

TestShape.java

26

2.2.7 INTERFACE

A Java interface is a 100% abstract superclass which define a set of methods its subclasses must support.
An interface contains only public abstract methods (methods with signature and no implementation) and
possibly constants (public static final variables). You have to use the keyword "interface" to define an
interface (instead of keyword "class" for normal classes). The keyword public and abstract are not needed
for its abstract methods as they are mandatory.
Similar to an abstract superclass, an interface cannot be instantiated. You have to create a "subclass" that
implements an interface, and provide the actual implementation of all the abstract methods.
Unlike a normal class, where you use the keyword "extends" to derive a subclass. For interface, we use
the keyword "implements" to derive a subclass.
An interface is a contract for what the classes can do. It, however, does not specify how the classes should
do it.
An interface provides a form, a protocol, a standard, a contract, a specification, a set of rules, an interface,
for all objects that implement it. It is a specification and rules that any object implementing it agrees to
follow.

27

In Java, abstract class and interface are used to separate the public interface of a class from its
implementation so as to allow the programmer to program at the interface instead of the various
implementation.

/*

 * The interface Shape specifies the behaviors

 * of this implementations subclasses.

 */

public interface Shape {

 // Use keyword "interface" instead of "class"

 // List of public abstract methods to be implemented by its subclasses

 double getArea();

}

// The subclass Rectangle needs to implement all the abstract methods in Shape

public class Rectangle implements Shape {

 // using keyword "implements" instead of "extends"

 // Private member variables

 private int length;

 private int width;

 // Constructor

 public Rectangle(int length, int width) {

 this.length = length;

 this.width = width;

 }

 @Override

 public String toString() {

 return "Rectangle[length=" + length + ",width=" + width + "]";

 }

 // Need to implement all the abstract methods defined in the interface

 @Override

 public double getArea() {

28

 return length * width;

 }

}

// The subclass Triangle need to implement all the abstract methods in Shape

public class Triangle implements Shape {

 // Private member variables

 private int base;

 private int height;

 // Constructor

 public Triangle(int base, int height) {

 this.base = base;

 this.height = height;

 }

 @Override

 public String toString() {

 return "Triangle[base=" + base + ",height=" + height + "]";

 }

 // Need to implement all the abstract methods defined in the interface

 @Override

 public double getArea() {

 return 0.5 * base * height;

 }

}

A test driver is as follows:

public class TestShape {

 public static void main(String[] args) {

 Shape s1 = new Rectangle(1, 2); // upcast

 System.out.println(s1);

 System.out.println("Area is " + s1.getArea());

 Shape s2 = new Triangle(3, 4); // upcast

 System.out.println(s2);

 System.out.println("Area is " + s2.getArea());

 // Cannot create instance of an interface

 //Shape s3 = new Shape("green"); // Compilation Error!!

 }

}

2.3 EXERCISES
1. Create a program that defines an animal, and there are three types of animal, carnivores, herbivores,
omnivores, then run eat method, when we test carnivore eat method the results will be "Eating meat",
herbivores eat method will appear "Eating Plant ", omnivores eat method will appear" Eating meat and
plants "

29

2. From the problem number one explain about and give example abstraction, polymorphisms,
inheritance and encapsulation.

2.4 HOMEWORK

1. Create a miniature hotel reservation program, so there is a hotel, consist of at least 10 rooms, and
then when we do a method (free of its method name) into one of the rooms, the room that has
initial status is “free” will change to “Reserved by (the name of booker)”

Example :

before hoho.getRoom001(“Joni”)
room001 : free

after hoho.getRoom001(“Joni”)

 room001 : reserved by Joni

before hoho.getRoom009(“Parker”)
room009 : free

after hoho.getRoom009(“Parker”)
room009 : reserved by Parker

30

CHAPTER 3 – ARRAY & LINKED LIST

3.1 LEARNING OBJECTIVES
1. Students can understand about array and linked list
2. Students are able to declare and use arrays and linked lists
3. Students can know when to use arrays and when to use linked lists

3.2 MATERIALS

3.2.1 Array

 Array is one of the basic data structures available, and is a collection of many variables with the
same data type, indicated by an index for each element. We can think of arrays as tables, where each
element is stored in each table space. There are 2 types of array: one-dimensional array called vector and
two-dimensional array called matrix.

In Java, arrays are a primitive type that is treated as objects. To create an array, you must use the new
operator:

The above declaration can be shortened into one statement:

This declaration will create an array with null elements. If you want to insert elements at the start of
declaration, you can do this:

Accessing an element in the array requires square brackets, similar to other languages. Note that the array
index starts with 0, meaning the first element is on index 0.

Here is an example of array implementation, named Array.java. The program shows how an array can be
used to store and display data.

31

The program takes the desired size of the array and the array elements as the input, and then displays the
elements in one line as the output. For example, if the desired array size is 5, and the inserted array
elements are 65, 76, 1, 900, and 55, then the result will look like below:

32

3.2.2 Array Processing

After the array is stored, we can then utilize the array for data processing. Some examples are search and
replacement.

Data search means finding whether an element is stored in the array. For example, in an array containing
the numbers [20, 21, 22, 24], searching for the number 23 would return the value FALSE, while searching
for the number 24 would return TRUE.

The code for data search would look like this:

Meanwhile, data replacement means replacing a value in the array with another array. Case in point: the
number 5 in an array [5, 10, 15, 20, 25, 30] can be replaced with the number 6, resulting in the array now
containing [6, 10, 15, 20, 25, 30].

The code for data replacement would look like this:

33

The resulting total code becomes like this:

34

For the

35

output, if we start with an array of size 5 containing [7, 23, 72, 26, 2], search for the number 5 in the array,
and replace 72 with 106, it should look like this:

3.2.3 Linked List

Similar to array, linked list is another basic data structure for data storage and processing. However, the

difference lies in the use of memory: whereas array stores its elements in a large memory block, linked

list stores each element on separate memory spaces called nodes. These spaces are then connected to

each other using pointers, hence the name “linked list”.

A linked list require two types of variables:
1. Node

The main body of the list, every node contains the stored element and the pointer to the next node
in the list

2. Pointer
The head of the list, the pointer contains the memory address of the next node.

In Java, implementation of node and pointer can be done like this:

After the node and pointer class is implemented, the linked list class is implemented:

36

You may notice that there are linked list operations present. These operations helps us to process and
manipulate the linked list. The methods can be seen below:

1. insertFirst() and insertLast()
The insertFirst() and insertLast() methods of LinkListInit insert a new node at the beginning and the end of
the list respectively.

37

2. deleteFirst() and deleteLast()
The deleteFirst() and deleteLast() methods destroys the first and last node respectively. This is done by
moving the first node reference forward for the former, and setting the second last node to point to null
for the latter.

3. displayList()
This method displays the contents of the list, from first node to last node.

Here is the full implementation of LinkList.java.

38

39

40

In this program, two lists are declared; the first list has the integers inserted at the end, while the second
list has the integers inserted at the beginning. The first node of the first list and the last node of the second
list are then deleted.

An example of the program’s output is such:

3.2.4 Built-in Linked List

Another implementation of linked list in Java is the use of the built-in LinkedList class. The class contains

many operations, including the aforementioned ones, without having to build new classes.

Rewriting the program to use LinkedList class would result in this:

41

The output would be like this:

42

3.3 Exercises

1. Using arrays, create a program that will sum all of the numbers inserted by the user. Note that the
program will read the amount of numbers to be inserted, and the inserted numbers

2. Do the same as above question, but use linked lists
3. Create an array that stores 10 numbers, then triples each number
4. Write a delete() function for the first implementation of linked list that can delete any number on the

list

43

CHAPTER 4 – STACK & QUEUE

4.1 LEARNING OBJECTIVES
1. Students can understand about stack and queue
2. Students are able to declare and use stacks and queues
3. Students can know when to use stacks and when to use queues

4.2 MATERIALS

4.2.1 STACK

A stack is a linear data structure that allows access to only one data item: the last item inserted. If you
remove this item, then you can access the next-to-last item inserted, and so on. Think of stack like a pile of
letters: you process each letter from the top, and you can only add a letter to the top of the pile. A stack is
said to be a Last-In-First-Out (LIFO) storage mechanism, because the last item inserted is the first one to be
removed.

There are four basic operations on stack:
1. Initialize stack

Stack initialization means creating an empty stack, or a stack that has no elements in it

2. Push

Push is the operation of adding an element to the top of the stack. The algorithm is as follows:
a. Create a new data that will be pushed into the stack
b. Push the data into the stack
c. Modify the top pointer to point to the newly pushed data

3. Pop

Pop is the operation of removing an element from the stack. Assuming the stack contains several
elements, the algorithm is as follows:
a. Take and remove the top data from the stack
b. Modify the top pointer to point to the next top data

4. isEmpty

44

isEmpty is the operation of checking whether the stack contain elements. The operation will return
true if the stack is empty, and will return false otherwise.

Stack can be implemented using two methods: array and linked list. Here is a full implementation example
of stack using array, named Stack.java. The program stores the input numbers in a stack, then displays the
numbers that have been stored.

45

46

This is an example of the output of the program.

4.2.2 Stack Implementation

Java already has a built-in Stack class, imported through Java.util.Stack. Here is the example of the program
similar to the previous one but using the Stack class.

47

Here is the output example.

4.2.3 Queue

A queue is a linear data structure similar to stack, but the addition and deletion of data item is done on
opposite ends. Items can be inserted on one end, and removed from the other end. Think of queue like
supermarket queues: you enter from one end of the queue and exit from the other end. A queue is said to
be a First-In-First-Out (FIFO) storage mechanism, because the first item inserted is the first one to be
removed.

There are five basic operations on queue:
1. Initialize queue

Queue initialization means creating an empty queue, or a queue that has no elements in it

2. Enqueue

Enqueue is the operation of adding a new element in the rear end of the queue. The algorithm is as
follows:
a. Create a new data that will be inserted into the queue
b. Insert the new data into the queue
c. Modify the last pointer to point to the newly inserted data

3. Dequeue

Dequeue is the operation of removing an element from the front end of the queue. Assuming the
queue contains several elements, the algorithm is as follows:
a. Take and remove the frontmost data from the queue
b. Modify the first pointer to point to the next front data

48

4. isEmpty

isEmpty is the operation of checking whether the queue contain elements. The operation will return
true if the queue is empty, and will return false otherwise.

5. isFull

The opposite of isEmpty, the operation will return true if the queue is empty, and will return false
otherwise.

Queue can be implemented in two ways: array and linked list. Here is a full example of queue
implementation using array, named Queue.java. The program implements a queue using a class QueueInit
and operated based on our commands to create a queue accordingly.

49

50

The output may look like this:

51

4.2.4 Queue Implementation

Queue are used normally in situations where elements may come one by one, and processed one by one,
thus requiring the use of a queue. One example may be the banking queue, where people wait in a line to
get a banking service. Here is an example of such implementation, called BankService.java. This program
allows you to add customers to a queue, remove customers from the queue, and check the current
situation of the queue. Note that this program used LinkedList class to serve as the queue.

52

53

54

This is the example of the output.

55

4.3 EXERCISES
1. Create a program to reverse the order of a string of characters entered by the user (eg. REVELATION -

> NOITALEVER)
2. Write a program that checks whether a string is palindrome (palindrome is a string that reads the

same forward and backward, eg TACOCAT)
3. Draw a sequence diagram showing the contents of the queue q, after each command line is done

q.enqueue(10);
q.enqueue(20);
q.dequeue();
q.enqueue(30);

4. Create a program that calculates the parking fee that each car must pay in a parking lot. Each car has
the information of the car model and its parking time. Assume the rate is Rp. 2000 per hour.

4.4 HOMEWORK
Create a simulation of queue on Banking Service.

56

CHAPTER 5 – ADVANCED SORTING

5.1 OBJECTIVES
In this laboratory you will:

1. Create an implementation of merge-sort

2. Compare merge-sort with other slow sorting method

5.2 MATERIALS

5.2.1 MERGE-SORT OVERVIEW

We first describe the merge-sort algorithm at a high level, without focusing on whether the data is an
array or linked list. (We will soon give concrete implementations for each.) To sort a sequence S with n
elements using the three divide-and-conquer steps, the merge-sort algorithm proceeds as follows:

1. Divide: If S has zero or one element, return S immediately; it is already sorted. Otherwise (S has

at least two elements), remove all the elements from S and put them into two sequences, S1 and

S2, each containing about half of the elements of S; that is, S1 contains the first ⌊n/2⌋ elements of

S, and S2 contains the remaining ⌈n/2⌉ elements.

2. Conquer: Recursively sort sequences S1 and S2.

3. Combine: Put the elements back into S by merging the sorted sequences S1

and S2 into a sorted sequence.

In reference to the divide step, we recall that the notation ⌊x⌋ indicates the floor of x, that is, the largest
integer k, such that k ≤ x. Similarly, the notation ⌈x⌉ indicates the ceiling of x, that is, the smallest integer
m, such that x ≤ m.
Figure below show how merge-sort work.

57

58

59

MERGE-SORT IMPLEMENTATION USING QUEUE
Code below is an implementation of merge-sort using queue.

60

61

62

5.3 EXERCISES
1. Implement merge-sort using queue as shown in figure.

63

CHAPTER 6 – TREES

6.1 LEARNING OBJECTIVES
In this laboratory you:
1. Create an implementation of the Binary Tree.

2. Examine how an index can be used to retrieve records from a tree.

6.2 MATERIALS

6.2.1 TREE OVERVIEW

A tree is an abstract data type that stores elements hierarchically. With the exception of the top element,
each element in a tree has a parent element and zero or more children elements. A tree is usually
visualized by placing elements inside ovals or rectangles, and by drawing the connections between parents
and children with straight lines. (See Figure Below) We typically call the top element the root of the tree,
but it is drawn as the highest element, with the other elements being connected below (just the opposite
of a botanical tree).

Formally, we define a tree T as a set of nodes storing elements such that the nodes have a parent-child
relationship that satisfies the following properties:

● If T is nonempty, it has a special node, called the root of T , that has no parent.

● Each node v of T different from the root has a unique parent node w; every node with parent w

is a child of w.

Note that according to our definition, a tree can be empty, meaning that it does not have any nodes. This
convention also allows us to define a tree recursively such that a tree T is either empty or consists of a
node r, called the root of T , and a (possibly empty) set of subtrees whose roots are the children of r.

64

6.2.2 BINARY TREE

A binary tree is an ordered tree with the following properties:
● Every node has at most two children.

● Each child node is labeled as being either a left child or a right child.

● A left child precedes a right child in the order of children of a node.

The subtree rooted at a left or right child of an internal node v is called a left subtree or right subtree,
respectively, of v. A binary tree is proper if each node has either zero or two children. Some people also
refer to such trees as being full binary trees. Thus, in a proper binary tree, every internal node has exactly
two children. A binary tree that is not proper is improper.

6.2.3 BINARY TREE ABSTRACT DATA TYPE

As an abstract data type, a binary tree is a specialization of a tree that supports three additional accessor
methods:

● left(p): Returns the position of the left child of p (or null if p has no left child).

● right(p): Returns the position of the right child of p (or null if p has no right child).

● sibling(p): Returns the position of the sibling of p (or null if p has no sibling).

6.2.4 LINKED STRUCTURE FOR BINARY TREE

A natural way to realize a binary tree T is to use a linked structure, with a node (see Figure Below) that
maintains references to the element stored at a position p and to the nodes associated with the children
and parent of p. If p is the root of T , then the parent field of p is null. Likewise, if p does not have a left
child (respectively, right child), the associated field is null. The tree itself maintains an instance variable
storing a reference to the root node (if any), and a variable, called size, that represents the overall number
of nodes of T .

6.2.5 BINARY SEARCH TREE

Binary search trees (BST), sometimes called ordered or sorted binary trees, are a particular type of
containers: data structures that store "items" (such as numbers, names etc.) in memory. They allow fast

65

lookup, addition and removal of items, and can be used to implement either dynamic sets of items, or
lookup tables that allow finding an item by its key (e.g., finding the phone number of a person by name).

A binary search tree of size 9 and depth 3, with 8 at the root. The leaves are not drawn.

In the case of a linked binary search tree, we suggest that the following update methods be supported:

● addNode(node): Add a node to a binary search tree. If the tree is empty, then the node become

the root.

● insertNode(): Insert the new node to the existing binary search tree.

● searchValue(root, value): a static method to check if a given value exist on a given binary search

tree.

66

67

6.2.6 RED-BLACK TREE

Formally, a red-black tree is a binary search tree with nodes colored red and black in a way that satisfies
the following properties:

● Root Property: The root is black.

● External Property: Every external node is black.

● Red Property: The children of a red node are black.

● Depth Property: All external nodes have the same black depth, defined as the number of proper

ancestors that are black.

An example of a red-black tree is shown in Figure Below

INSERTION RED-BLACK TREE
Figures Below show a sequence of insertion operations in a red-black tree.

68

DELETION RED-BLACK TREE
Figures Below show a sequence of deletion operations in a red-black tree.

69

6.3 EXERCISE
1. Implement a binary tree using linked structure that support all the update methods.

6.4 HOMEWORK
Implement insertion method for red-black tree

70

CHAPTER 7 – HASHING

7.1 LEARNING OBJECTIVES
1.1 Pratikan dapat mengenal dan menerapkan hashing dalam struktur data
1.2 Praktikan dapat mengkodekan hashing dalam konsep object oriented

7.2 MATERIALS
Hashing is a process to index, add, retrieve data from a database. By inserting hashing, finding, and
deleting data in the database can be made quickly (complexity). In application hashing always use a hash
table as a reference in inserting, finding, or deleting data in the data structure. Data can be stored in the
hash table and the process of determining the location of the data in the hash table uses a hash
function.

The structure of the hash table is just an array of fixed length, contains a key. A key is a string with the
value of the association. Each key is mapped to some number in the range 0 to (table size-1) and placed
in a cell.

Gambar 1-Hash Table

7.2.1 Hash Function

In general, a hash function (H) is a function to convert the set of keys recordings (K) into the address set
reminders (position index array). There are two important aspects to consider when choosing a hash
function. First, the hash function should be easy and quick to look for or calculated. Second, the hash
function as much as possible to map the array index in the hash table is uniformly so that the collision
(collision) can be minimized. Here are some commonly used hash functions:
Modular Method

71

In this way we can choose a perubah m of greater value than the number of keys in K, for example m,
and usually have a prime number. The hash function is specified as:
H (k) = k mod m or H (k) = k mod m + 1
The first equation selected if the desired key address is 0 to m-1. The second equation is selected if the
desired key address is 1 to m.

Midsquare Method
In this method, the key is known squared and the hash function is selected
 H (k) = I
I value obtained with clear digits on both sides of k, with a note that the number of digits on the left and
the right should be the same. If not the same, then the digit to the left as though the added amount of
padding zero (0), so it will produce the correct address.

Digit Sum
In this function, keys that are known to be broken down into several groups, each consisting of several
pieces of digits, for example two pieces. Then digits of existing group totaled.
H (10347) = 1 + 03 + 47 = 51
H (87 492) = 8 + 74 + 92 = 174 -> 1 + 74 = 75
H (34212) = 3 + 42 + 12 = 57
H (88 688) = 8 + 86 + 88 = 182 -> 1 + 82 = 83

7.2.2 Preventing Collision

Collision is a situation where if the position obtained from the hash function has been used, then another
position should be found because the collision occurred. This collision can be solved by rehashing. Here
are some ways to cope with collisions:

Linear Probing
If in case of a collision, then the solution is to find out if the array next to them already in use? If it is then
it will look next to him again until the array is found that has not been used. As an example:

 H(56)=4 slide 4 times

In the picture above will be made inserts, after having applied to a hash function H(k) then its generate
the 4-th index. Because the index has been used then there was a collision. Then the next step is to find
the next index that unused until you find the 8-th index.

72

The above method uses linear probing to resolve collisions. Linear probing applied to the loop that serves
to check whether a neighboring array slot has not been filled, the loop will continue to run until it finds
the index array that has not been filled, in turn, enter value.

Quadratic Probing
Much like with linear probing, only in the event of a collision as the name suggests is quadratic probing,
it will shift in squares to find the array slot that has not been filled. For example,
k + 1, k + 4, k + 9, k + 16, ...
this brings the advantage that if the number of addresses available is prime and hash table size array is
large, then the trial time that is needed to find an array with empty slot can be minimalized.

The above method using quadratic probing. Control flow in code intended that when the index over the
hash table size (array size) then the search will return to the zero index. Remember if the key modulo by
the numbers that is not prime then at a certain moment will occur an infinite loop, because it will cause

73

the same pattern while searching the index array. Therefore it would be good if the modulo number
converted into a larger primes but approaching the array size.

Double Hashing
In double hashing is used two pieces of the hash function to avoid collisions. It can simply be explained as
follows. K determined from the key hash addresses his first, for example, H (k) = h. Then a second hash
specified address, for example, H (k) = h '≠ m (where m is the number of hash addresses that can be
generated from the first hash function). Thus, the search is performed in sequence at addresses

 h, h + h ', h + 2h', h + 3h ', ...

From the above code can be observed that in the process of dealing with collisions this method uses a
hash function that works to help determine how many shifts to be done. To avoid an infinite loop like
quadratic probing, then how good it using primes as the modulo number.

74

Chaining
Chaining is another method used to overcome the possibility of hash collisions address. In principle, this
method utilizes linked list mounted on each array address hash table. Thus, a complete hash address
and a linked list that stores the records that have the same hash address, the address will be stored in
the same hash linked list corresponding to using the pointer as a liaison.

For example, if we have tapes recording key can be written as

 34 56 123 78 93 70 100 21 11 77 28

And a hash function that is selected is k mod 10. Thus, the hash address will consist of ten addresses
numbered 0 through 9. recordings above will be mapped as shown below

0 70

100

1 21 11

2

3

123

93

4

34

5

6 56

7

77

8 78

28

9

Because in this method chaining is the implementation of a single linked list it must get a node (a separate
class) that contains key and value.

Then, because it will be implemented on the array also then made a hash table class, in which is contained
method such as insert (), remove (), etc.

75

76

77

78

79

80

81

7.3 Exercise
Data given key: {10,20,30,40,50,8,60,15,30,45,11,13,17,19,100}, apply the hash function on the key on
the array and hashing should be able to handle collision / crash , Make if the collision is avoided by the
way,
a. linear probing
b. quadratic probing
c. Double hashing

82

CHAPTER 8 – HEAP

8.1 LEARNING OBJECTIVES
1. create an implementation of the Heap ADT using an array representation of a tree.
2. create a heap sort method based on the heap construction techniques used in your

implementation of the Heap ADT.
3. create a heap sort method based on the heap construction techniques used in your

implementation of the Heap ADT.
4. analyze where elements with various priorities are located in a heap.

8.2 MATERIALS

8.2.1 OVERVIEW

A heap is a binary tree that satisfies the following property:

 Tree must be complete. The point is that each level of the tree should be filled (a parent should
have the right leftchild and child), except at the lowest level may not be complete. If the lowest
level is not complete then the child should be vacated is rightchild.

 For each element E, all of which are child values of E must be less than or equal with the value of
E. Therefore, root will store the maximum value.

 Gambar 1 – Heap Tree

8.2.2 Array Implementation

In indexing the array index, heap tree has rules to store value as follows:

83

In this case the root is placed on the index "1" to facilitate the calculation of the index. Can be observed
that for a node other than the root applicable,
• For each leftchild is at index 2 * k
• For each rightchild is at index 2 * k + 1
• And the parent is at index k / 2
Heap tree is formed of nodes that have a key value. Therefore, it needs a node class as the following
code

After make the node class, then made a heap class

84

Once formed Heap class, of course we need a method to insert, remove, and to keep the heap property
is always met.

8.2.3 Heap – insert

The new elements always be added to the heap at the bottom level. Property of the heap is always kept
by comparing elements that are added to its parent and then swap any position when the element is
larger than its parent. Keep in mind that the purpose of this property is to keep the value of the parent is
always greater than the child.

85

8.2.4 Heap – remove

In heap tree, when its applied to the method remove () then the node that has the largest value is deleted.
Then the root will be replaced with the lower-right node. Then the tree heap will keep the property with
the existing rule that would bring down the rightmost node to the most suitable position on the heap tree.

86

Delete on this method is delete the max, so if the method is called the key to the root will be lost because
the key to the root key must be the greatest / maximum. After the root is removed then the trickle-down
method will look for the right key to root replacement at the same time to maintain the heap property
remains unfulfilled.

87

8.2.4 Print the heap tree

Each value / key from the heap tree stored in an array. Then to display the heap tree, the heap property
is used.

8.3 Exercise
Make heap tree for arrays with size 15 and data key:
Key = {78, 3, 9, 10, 23, 77, 34, 86, 90, 100, 20, 66, 94, 63, 97}

8.4 Homework
Make a heap sort to sort the data key on a heap of exercise above

88

CHAPTER 9 - GRAPHS

9.1 LEARNING OBJECTIVES
In this laboratory you will:
Create an implementation of the Graph

9.2 MATERIALS

9.2.1 OVERVIEW

Graphs are widely-used structure in computer science and different computer applications. We don't say
data structure here and see the difference. Graphs mean to store and analyze metadata, the connections,
which present in data. For instance, consider cities in your country. Road network, which connects them,
can be represented as a graph and then analyzed. We can examine, if one city can be reached from
another one or find the shortest route between two cities.
First of all, we introduce some definitions on graphs. Next, we are going to show, how graphs are
represented inside of a computer. Then you can turn to basic graph algorithms.
There are two important sets of objects, which specify graph and its structure. First set is V, which is called
vertex-set. In the example with road network cities are vertices. Each vertex can be drawn as a circle with
vertex's number inside.

Figure 9.1 Vertices

Next important set is E, which is called edge-set. E is a subset of V x V. Simply speaking, each edge connects
two vertices, including a case, when a vertex is connected to itself (such an edge is called a loop). All
graphs are divided into two big groups: directed and undirected graphs. The difference is that edges in
directed graphs, called arcs, have a direction. These kinds of graphs have much in common with each
other, but significant differences are also present. We will accentuate which kind of graphs is considered
in the particular algorithm description. Edge can be drawn as a line. If a graph is directed, each line has an
arrow.

Figure 9.2 Undirected Graph

Figure 9.3 Directed Graph

89

9.2.2 GRAPH IMPLEMENTATION

Let's begin with the Vertex class. A Vertex is a a node in the graph, as described above. The vertex's
neighbors are described with an ArrayList<Edge>. The purpose of using the incidence neighborhood
(Edges) rather than the adjacency neighborhood (Vertices) was because path-finding and spanning tree
algorithms need the edges to function. Note that this implementation does not allow for multiple Edge
objects between the same pair of Vertex objects.

Program Code 9.1 Vertex Class

Next, we examine the Edge class. An Edge models the adjacency relation between two vertices.
So the Edge class has two vertices. In many situations, the notion of an edge weight is also important.
Intuitively, the edge weight represents the distance between two vertices. Even in unweighted graphs, it
is a commonly accepted notion that traversing two edges bears greater cost than staying at the current
vertex. So the Edge class allows for a weight attribute, assuming by convention a uniform weight of 1 if
no weight is specified. This allows for treating the graph as "unweighted" in a manner that is still consistent
with the preconditions of many common graph algorithms.

It is also important to note that I deviate from a key expectation of the Comparable interface here.
The Comparable interface expects that if the compareTo() method returns a value of 0, then the equals()
method will return a value of true for the given parameter. I use the compareTo() method to strictly
compare Edge weights, while the equals() method simply tests if the Edge references the same pair of
Vertices. The design decision has two considerations. The first is to prohibit multiple edges for the same
pair of vertices, to which the equals() method contributes. The second consideration is that the
compareTo() method only cares about Edge weights in algorithmic considerations.

90

Program Code 9.2 Edge Class and Constructor

Program Code 9.3 compareTo method

Program Code 9.4 equals method

Lastly, consider the Graph class implementation. We utilize an incidence list implementation,
which is favorable for many (but not all) Graph algorithms. Basic operations of insertion, lookup, and
removal are supported for both Vertex and Edge objects. Vertex objects are uniquely identified by their
labels, and no two Vertex objects can share the same label. However, there is support to overwrite existing
Vertex objects. Note that doing such will remove from the Graph all Edges associated with the existing
Vertex.

No equals() method is provided for the Graph class. The notion of Graph equality is referred to as
Graph isomorphism. The problem deciding if two Graphs are isomorphic is not known to be in the
complexity class P. Therefore, it is not known if a polynomial time algorithm exists to determine if two
graphs are isomorphic. For this reason, no equals() method is included to compare the two Graphs.

91

Here is a demo file to illustrate Graph class functionality, the graph that will be built is going to be:

92

The full implementation of DemaGraph is shown below:

public class DemoGraph {

 public static void main(String[] args){

 Graph graph = new Graph();

 //initialize some vertices and add them to the graph

 Vertex[] vertices = new Vertex[5];

93

 for(int i = 0; i < vertices.length; i++){

 vertices[i] = new Vertex("" + i);

 graph.addVertex(vertices[i], true);

 }

 //illustrate the fact that duplicate edges aren't added

 for(int i = 0; i < vertices.length - 1; i++){

 for(int j = i + 1; j < vertices.length; j++){

 graph.addEdge(vertices[i], vertices[j]);

 graph.addEdge(vertices[i], vertices[j]);

 graph.addEdge(vertices[j], vertices[i]);

 }

 }

 //display the initial setup- all vertices adjacent to each other

 for(int i = 0; i < vertices.length; i++){

 System.out.println(vertices[i]);

 for(int j = 0; j < vertices[i].getNeighborCount(); j++){

 System.out.println(vertices[i].getNeighbor(j));

 }

 System.out.println();

 }

 //overwritte Vertex 3

 graph.addVertex(new Vertex("3"), true);

 for(int i = 0; i < vertices.length; i++){

 System.out.println(vertices[i]);

 for(int j = 0; j < vertices[i].getNeighborCount(); j++){

 System.out.println(vertices[i].getNeighbor(j));

 }

 System.out.println();

 }

 System.out.println("Vertex 5: " + graph.getVertex("5")); //null

 System.out.println("Vertex 3: " + graph.getVertex("3")); //Vertex 3

 //true

 System.out.println("Graph Contains {1, 2}: " +

 graph.containsEdge(new Edge(graph.getVertex("1"),

graph.getVertex("2"))));

 //true

 System.out.println(graph.removeEdge(new Edge(graph.getVertex("1"),

graph.getVertex("2"))));

 //false

94

 System.out.println("Graph Contains {1, 2}: " + graph.containsEdge(new

Edge(graph.getVertex("1"), graph.getVertex("2"))));

 //false

 System.out.println("Graph Contains {2, 3} " + graph.containsEdge(new

Edge(graph.getVertex("2"), graph.getVertex("3"))));

 System.out.println(graph.containsVertex(new Vertex("1"))); //true

 System.out.println(graph.containsVertex(new Vertex("6"))); //false

 System.out.println(graph.removeVertex("2")); //Vertex 2

 System.out.println(graph.vertexKeys()); //[3, 1, 0, 4]

 }

}

9.3 EXERCISES
1. Test the Graph Implementation according to code
2. Implement Depth First Search and Breadth First Search

95

CHAPTER 10 – WEIGHTED GRAPHS

10.1 LEARNING OBJECTIVES
In this laboratory you:

 Create an implementation of the Weighted Graph ADT to implement shortestPath.

10.2 MATERIALS

10.2.1 WEIGHTED GRAPH OVERVIEW

In the last chapter we saw that a graph's edges can have direction. In this chapter we'll explore another
edge feature: weight. For example, if vertices in a weighted graph represent cities, the weight of the edges
might represent distances between the cities, or costs to fly between them, or the number of automobile
trips made annually between them (a figure of interest to highway engineers). When we include weight
as a feature of a graph's edges, some interesting and complex questions arise. What is the minimum
spanning tree for a weighted graph? What is the shortest (or cheapest) distance from one vertex to
another? Such questions have important applications in the real world.

10.2.2 WEIGHTED GRAPH IMPLEMENTATION

In the previous chapter you have seen that every edge can be weighted, as you can see in this method:

In the Graph class, add a method void shortestPath(Vertex v0) that implements a single-source shortest-
path algorithm for the Graph.This method finds the cost of the shortest path between v0 and every other
connected vertex in the graph, counting every edge as having unit cost. An outline of the algorithm

96

(Dijkstra's algorithm) is below. Note that Dijkstra's algorithm works for graphs with non-negative weight
edges, but in this case all edges have the same weight.

Given: a graph G and starting vertex v0 in G

Initialize all vertices in G to be unmarked and have infinite cost

Create a priority queue, q, that orders vertices by lowest cost

Set the cost of v0 to 0 and add it to q

while q is not empty:

 let v be the vertex in q with lowest cost

 remove v from q

 mark v as visited

 for each vertex w that neighbors v:

 if w is not marked and v.cost + 1 < w.cost:

 w.cost = v.cost + 1

 add w to q

Output: the cost of each vertex v in G is the shortest distance from v0 to v.

Program for Djikstra:

97

10.3 EXERCISES
Implement the shortest path problem in your java code.

10.4 HOMEWORK
Implement the shortest path on Map Direction Problem. Take the data from Google Maps API.

